Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Avinash N. Thadani, Robert A.
Batey and Alan J. Lough*
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.102$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(2-Cyclohex-1-enylvinyl)[1,3,6,2]dioxazaborocane

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BNO}_{2}$, the $\mathrm{B}-\mathrm{N}$ distance is 1.6720 (17) A. Molecules are linked through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form infinite chains with an $\mathrm{N} \cdots \mathrm{O}$ distance of 2.8581 (13) Å.

Comment

The Diels-Alder (DA) reaction is a powerful method for the selective formation of functionalized cyclohexene derivatives. Dienylboronates have proved to be effective dienes for intermolecular DA reactions with reactive dienophiles (Vaultier et al., 1987; Tailor \& Hall, 2000) or intramolecular tethered DA reactions with unreactive dienophiles (Batey et al., 1999). The synthetic utility of these dienes, though, can be limited due to their susceptibility to air and/or moisture. We are interested in developing stable dienylboronates that function as versatile equivalents for hetero-substituted dienes. The title compound, (I), fulfills the above criteria and is also amenable to long-term storage. Previously, it had been shown that compounds that are structurally related to (I) show promise in asymmetric Diels-Alder reactions (Wang, 1991).

(I)

The structure of the title compound is similar to that of the compound $4,5,7,8$-tetrahydro-2-(2-propenyl)-6H-[1,3,6,2]dioxazaborocine, (II), which we have already determined (Thadani et al., 2001). As in (II), moleclues of (I) are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form infinite chains through glide-plane transformations along the c axis. The $\mathrm{N} \cdots \mathrm{O}$ distance in (I) is 2.8581 (13) \AA for $\mathrm{N} 1 \cdots \mathrm{O} 1$ (see Fig. 2 and Table 2). The B1-N1 distance is 1.6720 (17) \AA in (I) and 1.659 (4) \AA in (II). A list of references for other dioxazaborocine compounds is included in our paper by Thadani et al. (2001).

Experimental

To a solution of dicyclohexyl (2-cyclohex-1-enylvinyl)boronate (Batey et al., 1999) in a minimal amount of ${ }^{i} \mathrm{PrOH}$ was added

Figure 1
View of (I) showing the atom-labelling scheme. Ellipsoids are shown at the 50% probability level.

Figure 2
View of the hydrogen bonding in (I) showing the infinite chains in the c direction. Ellipsoids are at the 50% probability level.
diethanolamine (1 equivalent). The reaction mixture was stirred for 2 h at room temperature. The solvent was then removed under reduced pressure and the resulting solid recrystallized from acetonitrile. Compound (I) was obtained in 51% yield as clear colourless needles.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BNO}_{2} \\
& M_{r}=221.10 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.6372(3) \AA \\
& b=10.4879(5) \AA \\
& c=9.9749(4) \AA \\
& \beta=100.657(3))^{\circ} \\
& V=1196.44(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&

Minor, 1997)

$T_{\text {min }}=0.975, T_{\text {max }}=0.985$
11487 measured reflections 2441 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.102$
$S=1.05$
2441 reflections
146 parameters
H -atom parameters constrained

1870 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-14 \rightarrow 14$
$k=-13 \rightarrow 13$
$l=-12 \rightarrow 12$
Intensity decay: negligible

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0485 P)^{2}\right. \\
& +0.1680 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-B1	$1.4666(17)$	$\mathrm{N} 1-\mathrm{B} 1$	$1.6720(17)$
$\mathrm{O} 2-\mathrm{B} 1$	$1.4713(17)$	$\mathrm{C} 1-\mathrm{B} 1$	$1.587(2)$
O1-B1-O2	$113.23(11)$	$\mathrm{O} 2-\mathrm{B} 1-\mathrm{N} 1$	$100.60(10)$
O1-B1-N1	$101.66(10)$	$\mathrm{C} 1-\mathrm{B} 1-\mathrm{N} 1$	$112.87(10)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.93	1.97	$2.8581(13)$	158

Symmetry code: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

H atoms were included in calculated positions with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $0.99 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.93 \AA$.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1999); program(s) used to refine structure: SHELXTL/ $P C$; molecular graphics: $S H E L X T L / P C$; software used to prepare material for publication: SHELXTL/PC.

The authors wish to acknowledge NSERC Canada and the University of Toronto.

References

Batey, R. A., Thadani, A. N. \& Lough, A. J. (1999). Chem. Commun. pp. 475476.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1 (Windows NT Version). Bruker AXS Inc., Madison, Wisconsin, USA.
Tailor, J. \& Hall, D. G. (2000). Org. Lett. 2, 3715-3718.
Thadani, A. N., Batey, R. A. \& Lough, A. J. (2001). Acta Cryst. E57, o762o763.
Vaultier, M., Truchet, F., Carboni, B., Hoffmann, R. W. \& Denne, I. (1987). Tetrahedron Lett. 28, 4169-4172.
Wang, X. B. (1991). J. Chem. Soc. Chem. Commun. pp. 1515-1517.

